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1. INTRODUCTION

Autoregressive spectral estimation has become an important method of

spectral estimation in recent years (see Akaike (1969), Parzen (1974),

Uirych and Bishop (1975), and Beamish and Priestley (1981), for example)

despite 1) a continuing discussion of the problems of order determination

and 2) a lack of easily applied procedures for determining confidence

intervals or bands on the function being estimated.

In this paper we derive asymptotic 100 (l-a)% simultaneous confidence

bands for an autoregressive spectral density assuming one has data from a

finite order autoregressive process with known order or conditional upon

having correctly determined the order if it is unknown.

The bands are derived in section 2 and their implementation described

on simulated data in section 3.

2. SIMULTANEOUS CONFIDENCE BANDS

The basic property of autoregressive processes that we shall use is

that the reciprocal of the autoregressive spectral estimator is a linear

combination of a finite number of asymptotically normal random variables

whose asymptotic covariance matrix is easily consistently estimated. Thus

one can use a Scheffd (1953) type projection argument to determine asymptotic

confidence bands on the reciprocal of the autoregressive spectral density

(and thus on the density itself) at all frequencies.

Let Y be an autoregressive process of order p with coefficients

a(I),...,ct(p) and noise variance 02, i.e.
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p
I a(J)Y(t-j) -C(t) , t0O,+l,+2,...

where cz(O) - 1, c is a white noise series of uncorrelated zero mean random

variables having commnon variance a2, and the zeros of the complex valued
p

polynomial g(z) = c(j)z1 are all greater than one in modulus. Then we

write Y 1v AR(p,S ,a and note that the covariance function R(v) = E(Y(t)Y(t+v)),

v=O,+i,..., the spectral denst funtio f-u)
sity unctin f~w R(v)e' c[ r

and the parameters a and a2 are related by

f() a2 , ud-r,i'i, (2.1)

p
I a(j)R(j-v) = 6, v 2 , v>O, (2.2)
j-0

where 6 vis the Kronecker delta. If on the other hand, Y is a moving average

process of order q and parameters ()..,(qand a2, i.e

Y(t) ? a(k)c(t-k) , _

k=O

where 0(0) - 1, we have, with h(z) O(k) zk
k=0

Rt(v) 4 2  B-v (k)O(k+Ivj) I vi1 q
k-0

t 0 lvi >q
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f(W) = R(v)e 1 iv

v=- q

[R(ft 2 R(v) Cos vw]
2 '0'J 2 [1

IN G~at ion-

27r2  wC[-7r,ir]. ( 3"-

P. 9t ribut ionl/__

IAvalla.)illty Codes

Thus, if Yn-AR(p,z0 2) we have f(w)>o for all w and - Avail -ad/or
~Dist Spec ial

h(w) = Iur2/a2 Ig(eiw) 12 _=T~~

T T1
where x ( () L !-Cos w,..., 1-Cos pw), and YT (Y(O)Y(l).Y(p))'

with

41r2 P"v
y(v) I a-~ c(j)ct(j+v) ,vO. p

j-0

Thus the reciprocal of f is a linear combination of the parameters

y(O),yMl),...Y(p).

Let Y"AR(p,ci,c 2) and let Y(l),...,Y(n) be a sample realization from Y.

Let 6T = (&T,a2 &l.,p,2) be estimators of the parameters

E)T . (a T G2) - (c&(l),...,ci(p),o 2) that have the same asymptotic distribution

as the maximum likelihood estimators of e, i.e (see Parzen (1961)

A- (i-e) N (a, 04e)) (2.3)

where
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0T  
20 j

and r is the (pxp) Toeplitz covariance matrix of Y(l),...,Y(p). Estimators
p

having this asymptotic distribution include

(I) The Yule-Walker estimators (YWE), i.e the solution to the

Yule-Walker equations (2.2) with

T-v
(v) = 1" T Y(tlY(t+v) , v=O,...p

t=l

replacing R(v).

(2) The Least Squares estimators (LSE), i.e the values (l).... (p)

minimizing

T
S() I l Y(t)-(1)Y(t-l)-...-(1(p)Y(t-p)}2 ,

t=p+1

and 2 = S(a)/(n-p).

3) The Burg estimators (BGE), (see Ulrych and Bishop (1975) for a

description of these estimators).

Then the autoregressive spectral estimator f of f consists of evaluating

(2.1) with i replacing e. If the order p is unknown a priori there are

several procedures (see Hannan and Quinn (1979), for example) for finding a

value p from the data which as n-i= has probability one of determining the

correct order p.

Then the confidence bands are given by the following Theorem:



5

Theorem 2.1 Let Y(l),...,Y(n) be a sample realization from a Gaussian

AR(p,Cs,o 2) time series and let (1),...,c(p), and ;2 be estimators satisfying

(2.3). Let

(v) :4-2 P &(J)&(j+v) v=O,...,p
;2 j-0

and __) [(O) + 2 y(v) Cos vw]. Let OT ( T i/o2),
f() = -v=l

B (aT, 1/2), and B(O) be the (p+i) x (p+1) matrix having (t,m) element

B m( )  f 2 y(-i) , m=p+l

L o--Z6 (Lm/12 .4,2
4 1r2 6 t m) 4 2 S (O t,m ) , | . . . . p

t=l,...,p+l, where 6 1(tm) = a(m+(9.-l)) if m<p-(k-l) and zero otherwise,

while 62 (L,m) = a(m-(L-])) if m>t-l and zero otherwise. Then:

a) (n- (-y) + N 1 (0,t (y)) where t(y) = B(8 )~(B)B(0 T), and

t(s) 0 2r- 1  0
p ~

0T  2/14

b) Asymptotically, as n-*, the probability is at least I-a that

simultaneously for all w c [0,n],

I - f (W) I

h(w) + S() (W) - s(W)



where if h(w) - S~W < 0 we use infinity as the upper limit, and

S2(W)- x "P~l x T(WWt()x (W),

with X2  being the upper a critical value of a Chi square distribution

having p+l degrees of freedom.

Proof To prove (a) we note that from (2.3) and the definition of B we have

rn p+ 0,Then defining c =1/02 and 1 /&2, we have for

v-0, ... ,p,

p-v
Fn [y(v) -y(v)) -4n2 I rn- {^&(j)&(j+v) - ca,(j)a,(j+v)}

j =0

4,T2 pv rn {E&(j)&(j+v) Za(j)&(j+v) + a(j)&(j+v)

j =0

-ca(j)&(j+v) +ca(j)&(j+v) -ca(j)a(j+v)1

p-v
=4-,2 I V4- { &(j+v) [a(j)-a&j)] + 0a(j)&(j+v) (ec)

j =0

+ ca(j)[&(j+v) - a(j+v)])

412p-vI ,r {ca(j+v) /n- [a(j)-a,(j)] + a(j)oa(j+v) /n- (c-c)

+ co(J) n [&(j+v) - ca(J+v)])

P-v
W 1~ cet(j+v) Vn- [;(j)-a(j)]
j -o

+ 4,ff2V/;- (s-c) P ci(j)a(J+v) + Wur cco(j-v) In [&(J)-cx(J)],
J.0 J-V



where we write Xn Yn to indicate that the sequences {X }1, {Y I of random

variables converge in distribution to the same random variables, and we have

used Slutsky's Theorem (Rao (1973), P. 122) repeatedly.

Thus we have shown that /n (y-y) v n B(a)(5-B) and (a) follows.

From (a) then we have

n( _y)T - ) ( _) D 2

and since the elements of (y) are continuous functions of the elements of

y we have (Rao (1973), p. 388)

T I-Dn( -y) t- (y^)(y^y) -I 2+

Thus the probability is (asymptotically) l-a that the true parameter y lies

inside the ellipsoid defined as the set of vectors i satisfying

-l 2
where M n ( (/xa 2 p+ and Xa,p+! is the upper a critical value of a

2 distribution. But (Scheffe (1959), p. 407, et. sec.), y is in this

ellipsoid if and only if

T - T -
ix (Y-Y)I < [x M- x]

for all (p+1) dimensional vectors x and thus in particular only if (for

vectors x(w))
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I'^(w) -h (w) I < St ) [0,7] ,

giving a 100(l-a)% simultaneous confidence band for h(w) - l/f(W) as

h(w) - S(w) < h(w) < h(w) + S().

Then the reciprocal of this gives a simultaneous confidence band for f,

where if h(kw) - S() < 0 we use infinity as the upper limit on f(w) which

we can do without decreasing the probability content of the bands.

3. EXAMPLES

To illustrate the method of section 2 we calculated the autoregressive

spectral estimator and confidence bands for 10 sample realizations of

length 200 for each of three AR processes (see Beamish and Priestley (1981));

i.e AR(2, -.4, -.45, 1), AR(5, 1.7, 2.4, 1.634, .872, .168, 1), and AR(4,

-2.7607, 3.8106, -2.6535, .9238, 1). These processes have characteristic

polynomial zeros whose moduli are given by (1.11, 2.00), (1.12, 1.12, 1.19,

1.19, 3.33), and (1.01998, 1.01998, 1.019798, 1.019798) respectively, and have

variances 2.66, 30.59, and 761.3. Further, the ratio of the maximum to

the minimum values of the spectral densities for the three models are

approximately 111.5, 41,800, and 6xlO 6 . Thus the performance of our method

on these models should be representative of its performance on a wide class

of AR models. In Figures A-C we display on a log scale typical point

estimators and 95% confidence bands for the spectral density of the AR(2),

AR5), and AR4) models respectively using the Burg estimators. The true
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spectral density (the curve with the x's) is superimposed on the graphs.

Each curve consists of connecting values of the various functions at the

luI equally spaced points between 0 and H (labelled on the graph 0 to 1/2

cycles per sampling interval).

On the graphs, the largest noninfinite value of upper limits is assigned

to l/(h(w) - S(w)) whenever h(w) - S(w) < 0. Examples of this include

frequencies near .12 for the AR(4) model and those around .32 for the AR(5).

We have found this to be a useful diagnostic in practice as peaks such

as those in these simulated data may in fact be indicating the existence

of deterministic components in real data in which case the spectral density

does not exist.

In summary then, the confidence bands given in section 2 appear to

work well on a wide variety of autoregressive models.

IMim
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